A New High-Order Approximation for the Solution of Two-Space-Dimensional Quasilinear Hyperbolic Equations
نویسندگان
چکیده
منابع مشابه
A New High-Order Approximation for the Solution of Two-Space-Dimensional Quasilinear Hyperbolic Equations
we propose a new high-order approximation for the solution of two-space-dimensional quasilinear hyperbolic partial differential equation of the form utt A x, y, t, u uxx B x, y, t, u uyy g x, y, t, u, ux, uy, ut , 0 < x, y < 1, t > 0 subject to appropriate initial and Dirichlet boundary conditions , where k > 0 and h > 0 are mesh sizes in time and space directions, respectively. We use only fiv...
متن کاملA High Order Approximation of the Two Dimensional Acoustic Wave Equation with Discontinuous Coefficients
This paper concerns with the modeling and construction of a fifth order method for two dimensional acoustic wave equation in heterogenous media. The method is based on a standard discretization of the problem on smooth regions and a nonstandard method for nonsmooth regions. The construction of the nonstandard method is based on the special treatment of the interface using suitable jump conditio...
متن کاملThe comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کاملA new method for solving two-dimensional fuzzy Fredholm integral equations of the second kind
In this work, we introduce a novel method for solving two-dimensional fuzzy Fredholm integral equations of the second kind (2D-FFIE-2). We use new representation of parametric form of fuzzy numbers and convert a two-dimensional fuzzy Fredholm integral equation to system of two-dimensional Fredholm integral equations of the second kind in crisp case. We can use Adomian decomposition method for n...
متن کاملNumerical approximation based on the Bernouli polynomials for solving Volterra integro-differential equations of high order
In this article, an applied matrix method, which is based on Bernouli Polynomials, has been presented to find approximate solutions of high order Volterra integro-differential equations. Through utilizing this approach, the proposed equations reduce to a system of algebric equations with unknown Bernouli coefficients. A number of numerical illustrations have been solved to assert...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematical Physics
سال: 2011
ISSN: 1687-9120,1687-9139
DOI: 10.1155/2011/420608